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This paper examines a method of adding viscoelastic properties to finite element
models by using additional co-ordinates to account for the frequency dependence
usually associated with such damping materials. Several such methods exist and
all suffer from an increase in order of the final finite model which is undesirable
in many applications. Here we propose to combine one of these methods, the
GHM (Golla–Hughes–McTavish) method, with model reduction techniques to
remove the objection of increased model order. The result of combining several
methods is an ability to add the effects of viscoelastic components to finite element
or other analytical models without increasing the order of the system. The
procedure is illustrated by a numerical example. The method proposed here results
in a viscoelastic finite element of a structure without increasing the order of the
original model.
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1. INTRODUCTION

Viscoelastic damping is exhibited in many polymeric and glassy materials, and
such materials are often used to add damping to a structure to reduce vibration
and noise. However, accurate mathematical modelling of structures with
viscoelastic materials is difficult because the measured dynamic properties of
viscoelastic material are frequency and temperature dependent and can depend on
the type of deformation and amplitude. Several researches have presented
successful methods of modelling the effects of viscoelastic damping mechanisms
which introduce hysterisis or frequency dependence. One effective and popular
approach is to introduce additional co-ordinates to account for the frequency
dependent and hysteretic behavior. Motivated by a need to produce finite element
models (FEM) that are capable of predicting the dynamic response of a structure
or component with viscoelastic materials, Hughes and his coworkers [1–3] and
Lesieutre and his coworkers [4–7] developed independent means of augmenting a
FEM with new co-ordinates containing damping properties found from material
loss factor curves. The GHM uses a second order physical co-ordinate system and
the Lesieutre approach uses a first order state space method called the Augmenting
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Thermodynamic Fields (ATF) method and Anelastic Displacement Fields (ADF)
which is augmented from ATF by considering the effects of multiple relaxation
processes. Each of these methods are superior to the Modal Strain Energy method
(MSE, Johnson et al. [8]) because they allow for the existence of complex modes
and transient response calculation. While MSE is substantially easier to use, both
ADF and GHM are able to account for damping effects over a range of
frequencies, complex mode behavior, transient responses and both time and
frequency domain modelling. Inman [9] applied the GHM approach to simple
beams and Banks and Inman [10] used the alternate time domain method for
modelling hysteresis.

Unfortunately both the GHM and ADF methods increase the order of the finite
element model as they add co-ordinates to the system to compensate for frequency
dependence. This is a distinct disadvantage when compared to MSE. Hence, the
goal of this paper is to apply model reduction methods along with the GHM
method to remove this objection of increased size. Here we examine the GHM
finite element modelling method which represents a FEM model of viscoelastic
structures by introducing internal co-ordinates and modelling the hysteresis with
a transfer function.

If the damping is modelled using the GHM method, the structural degrees of
freedom are at least doubled. This increases the computation time using a finite
element model to predict the time response. Thus we are motivated to consider
the effects of model reduction techniques on the GHM model. In particular we
examine Guyan reduction and Internal Balancing reduction methods. Guyan
reduction [11, 12] removes some of the insignificant physical co-ordinates, thereby
producing a model that has smaller mass and stiffness matrices, but is not generally
applicable to systems with damping as it is based on static considerations.
However, the Guyan reduction produces a reduced order model with co-ordinates
that are a subset of the original co-ordinate system. On the other hand, the internal
balancing method [13] is derived in a state–space form and takes into consideration
the dynamic response of the system. Internal balancing methods are applicable to
damped systems (in fact asymptotic stability is required). On the other hand, the
balanced reduction schemes do not produce co-ordinates which are a subset of the
original finite element co-ordinates. The Guyan reduction method has the
advantage of allowing the user to retain specific co-ordinates of interest, while the
internal balancing method yields non-physical co-ordinates. Yae and Inman [14]
produced a version of the internal balancing method which combines the desirable
features of both methods by retaining dynamic fidelity and producing a reduced
model in terms of a subset of the original states.

2. FORMULATION OF A VISCOELASTIC MATERIAL

The stress–strain constitutive relationship for viscoelastic material is

s(x, t)=Eo(x, t)+g
t

0

g(t− s)
do(x, s)

ds
ds, (1)
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where s(x, t) is the stress, x$(0, l) is the distance along the beam, tq 0 is the time,
o(x, t) is the strain, E is the elastic modulus, and the kernel g(t− s) describes the
hysteresis as developed by Christensen [15], for example. This gives rise to a
hysteretic or complex modulus description for the vibration of a structure with a
viscoelastic material component.

The Golla–Hughes–McTavish method requires the representation of the
material modulus function as a series of (damped) ‘‘mini-oscillator’’ terms or
internal variables. This method was developed for direct incorporation into the
finite element method. The material complex modulus can be written in the
Laplace domain in the form

E*(s)=E0(1+ h(s))=E001+ s
k

n=1

ân
s2 +2z
 nv̂ns

s2 +2z
 nv̂ns+ v̂2
n1, (2)

where E0 is the equilibrium value of the modulus, and s is the Laplace operator.
The hatted terms are free variables for curve fitting to the complex data for a
particular material at a given temperature. Also, the number of expansion terms,
k, may be modified to represent the high or low frequency dependence of the
complex terms. The expansion of h(s) represents the material modulus as a series
of the mini oscillator (second order equation) terms [2, 3]. The other methods of
representing the hysteresis term, h(s), in equation (2) are summarized in Table 1.
The real and imaginary parts of Young’s modulus for DYAD-606 (SOUND-
COAT) at temperature 25°C are plotted in Figure 1. These are compared to the
corresponding curve fit values, indicated by (—), using two mini oscillator terms
[k=2 in equation (2)]. Different viscoelastic material will have different frequency
dependence and have a different number of terms, k, of the GHM fit.

T 1

Summary of methods for modeling viscoelastic effects using
internal variables

h(s)= s ajs
s+ bi

Boit (1955)

h(s)=E0 +E1sb

1+ bsb Bagly and Torvik (1981)

h(s)= s
n

ân
s2 +2z
 nv̂ns

s2 +2z
 nv̂ns+ v̂2
n

Hughes et al. (1985)

h(s)=1+ s
i

Dis
s+ bi

Lesieutre (1990)

h(s)=1+ s
i

aitis
tis+1 Yiu (1993)
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Figure 1. Two-term GHM modulus function (*, true value, ––, curve-fitting): (a) real value of
DYAD-606, (b) imaginary value of DYAD-606.

The constrained optimization algorithm used MATLAB’s ‘‘constr’’ command,
which is a Sequential Quadratic Programming (SQP) method, which finds the best
choice of hatted mini-oscillator terms. This routine computes the constrained
minimum of an objective function of the hatted terms a, z and v, starting at initial
estimates. That is, the material complex modulus in equation (2) is minimized with
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satisfying the constraints to find the optimum hatted terms of a, z, v. This is
mathematically stated as ‘‘minimize E*(s) subject to the constraints gi (s)E 0.’’
The constraints are the hatted terms ai in this case. This gives more accurate results
since the terms are bounded by some limits. A method of solving optimization
problems with inequality constraints is to use the Hessian of the Lagrangian
function,

L(x, l)=E*(s)+ s
m

i=1

ligi (x). (3)

This method uses a vector of Lagrange multipliers, li , to add the constraints
directly to the objective function. The new cost function, L(x, l), is then minimized
through iteration using a quasi-Newton updating method. This is then used to
generate the Quadratic Programming (QP) sub-problem based on a quadratic
approximation. The solution of the QP sub-problem is used to form a search
direction for a line search procedure. The minimum along the line formed from
this search direction is generally approximated using this search procedure or by
a polynomial method involving interpolation or extrapolation. The problem is to
find a new iterate xk+1 of the form, xk+1 = xk + a*d, where xk denotes the current
iterate, d the search direction obtained by an appropriate method and a* is a scalar
step length parameter which is the distance to the minimum. When the objective
function is minimized after some iterations, the approximate values of the hatted
terms of a, z and v are compared with the real values, giving the tolerance between
them. When the tolerance is satisfied at a limit (some small value), the optimum
hatted two mini-oscillator terms are E0 =1·18E6, â=[87·5 263·13],
z
 = [1344·6 129·6], v̂=[1494·5 39999·9]. The important effect of frequency is
that the Young’s modulus always increases with increasing frequency, as shown
Figure 1.

3. GHM FINITE ELEMENT MODEL

The equation of motion for a finite element in the Laplace domain is

M(s2x(s)− sx0 − sẋ0)+K(s)x(s)= f(s), (4)

where M is the mass matrix, x(s) is the displacement vector, x0 and ẋ0 are the initial
displacement and initial velocity vectors, respectively, f(s) is the forcing function
and

K(s)= (E*1(s)K� 1 +E*2(s)K� 2 + · · · +E*n(s)K� n). (5)

Here the variable E*n(s) represents the nth complex modulus in the Laplace
domain and K� n is the contribution of the nth modulus to the stiffness matrix.
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Considering a single modulus model with a single expansion term for simplicity,
and neglecting initial conditions, the GHM method represents equation (4) as

Ms2x(s)+E001+ â
s2 +2z
 v̂s

s2 +2z
 v̂s+ v̂21K�x(s)= f(s). (6)

Introducing a column of dissipation co-ordinates ẑ such that

ẑ(s)=0 v̂2

s2 +2z
 v̂s+ v̂21x(s), (7)

then the following Laplace domain element equation of motion is equivalent to
equation (6) with the material modulus function E*1(s):

&M0 0
â

v̂2 E0K�'$x(s)
ẑ(s)%s2 + &00 0

2âz

v̂

E0K�'$x(s)
ẑ(s)%s

+$K�E0(1+ â)
−âE0K�

−âE0K�
âE0K� %$x(s)

ẑ(s)%=$f(s)0 %. (8)

Here it is assumed that there are no rigid body modes as discussed by Slater et
al. [16]. Using an elastic diagonal matrix of the non-zero eigenvalues Le and
corresponding eigenvectors Re of the modulus-factored stiffness matrix and
substituting

z(s)=RT
e ẑ(s), (9)

one arrives at

&M0 0
â

v̂2 E0Le'$x(s)
z(s)%s2 + &00 0

2âẑ

v̂
E0Le'$x(s)

z(s)%s

+$K�E0(1+ â)
−âE0LeRT

e

−âE0ReLe

âE0Le %$x(s)
z(s)%=$f(s)0 %. (10)

This is the final form of the GHM model of the element viscoelastic equation of
motion, and the submatrices Le and Re in GHM viscoelastic element mass,
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damping and stiffness matrices are found through spectral decomposition of the
elastic component matrices:
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0
6I(4+ l 2)

l 3

, Re =

0
−1

z2+ l 2/2

. (11)

−
1

z2

l/2

z2+ l 2/2

The size of the additional co-ordinates z(s) depends on the nature of the material
and on how many terms are needed to fit the particular material’s loss modulus
data. In addition, the size of z(s) greatly increases the order of the analytical model,
rendering this approach somewhat undesirable. Reducing the order of equation
(10) forms the focus of the result presented here.

4. REDUCTION METHODS

Model reduction methods are briefly introduced here as they have been
developed in two different disciplines: finite element analysis and control theory.
In the condensation process or static reduction, such as the Guyan reduction
commonly done in finite element analysis, some of the insignificant physical
co-ordinates are removed such as rotational degrees of freedom. This
condensation method provides a reduced order model with co-ordinates that are
a subset of the original co-ordinate system. However, static reduction does not
necessarily apply to a damped system. Furthermore, this static reduction method
does not reflect the system’s dynamic behavior.

There are many additional methods on model reduction in structural dynamics.
Some methods common to control design theory are applicable to a damped
system and present the same dynamic response. For control design the model is
converted to a state–space form and reduced by one of the reduction methods
[13, 17–24]. These methods approximate a larger, dynamic system with a fewer
number of the state variables while minimally changing the structural dynamic
response. The problem with these reduction methods is that the reduced model is
expressed in a co-ordinate different from a physically meaningful co-ordinate.
Consequently, it is difficult to recognize any connection between the states of the
reduced model and those of the original model.

One of these basic methods, called the internal balancing method, is used here.
The drawback of these control methods is that it is not directly possible to express
the reduced model in terms of a subset of the original states. Yae and Inman [14]
found it is possible to express the reduced model in terms of a subset of the original
states if an additional co-ordinate transformation is properly applied.



. .   .626

4.1.   

The eigenvalue problem of an undamped system can be partitioned as follows:

0$K11

K21

K12

K22%− l$M11

M21

M12

M22%16q1

q27=6007, (12)

where the generalized co-ordinate q2 is to be retained if it is critical (excited
externally) for the performance of the system and the generalized co-ordinate q1

is to be removed by condensation (usually the rotational degree of freedom). Thus,
in state reduction all mass terms except M22 are ignored in order to obtain a
relation between q1 and q2. From the upper partition of equation (12),

q1 =−K−1
11 K12q2 =T�q2, (13)

where T� defined as T� =−K−1
11 K12; the transformation to reduce the original model

is given by

6q1

q27=$T�I%q2 =Tq2, (14)

where I is the identity matrix of appropriate size. Substituting equation (14) into
equation (12) and premultiplication by TT yields the condensed or reduced
eigenvalue problem

(K� − lM� )q2 = 0. (15)

Here the reduced matrices are given by

K� =TTKT and M� =TTMT. (16)

While this static reduction formulation was developed for undamped systems, a
straightforward application of the above transformations to a damped system with
an external force of f yields that the condensed damping matrix and external loads
are given by

D� =TTDT and F� =TTf. (17)

Equations (16) and (17) yield a reduced order model for a damped system. It has
the advantage of retaining the desired co-ordinate q2 as a subset of the original
states, but the distinct disadvantage of not reflecting the system dynamics so that
the response of the reduced system is a poor representation of the actual response.

4.2.   

The internal balancing method of model reduction forms the standard for most
model reduction methodologies in control theory. Internal balancing works with
damped systems and is very accurate. However, it does not provide a connection
to the physical co-ordinates. Here the original equations of motion are taken to
be

Mq̈+Dq̇+Kq= f, (18)



  627

where M, D, and K are the n× n real, symmetric, positive definite matrices. The
n×1 vector q is the displacement vector. The overdots denote differentiation with
respect to time. The n×1 vector f represents the external forces applied to the
structure. Equation (18) is converted into the state space form such that

ẋ(t)=Ax(t)+Bu(t), y(t)=Cx(t), (19)
where

A=$−M−1D
I

−M−1K
0 %, B=$M−1B1

0 %, C=[C1 C2],

and y(t) is a vector consisting of those states that are to be measured. Since the
B and C are directly related to the locations of applied force and measurement,
they influence the degree of controllability and observability. It should be assumed
that the system (A, B, C) is controllable, observable and asymptotically stable for
a valid application of this method. The balanced reduction allows those states that
minimally affect the response to be removed from the model. A useful measure
of this is provided for asymptotically stable systems by defining the controllability
and observability grammians, denoted by Wc and Wo , respectively and defined by

Wc =g
a

0

eAtBBTeATt dt, Wo =g
a

0

eATtCTCeAt dt, (20)

where eAt is the state transition matrix of the open-loop system ẋ(t)=Ax(t). Wc

and Wo are the unique symmetric positive definite matrices which satisfy the
Lyapunov matrix equations,

AWc +WcAT =−BBT, ATWo +WoA=−CTC, (21)

for asymptotically stable systems. Moore [13] has shown that there exists a
co-ordinate system in which these two grammians are equal and diagonal. Such
a system is then called balanced. These two balanced systems are

x̂
.
(t)= Âx̂(t)+ B̂u(t), ŷ(t)= Ĉx̂(t), (22)

where

x̂=P−1x, Â=P−1AP, B̂=P−1B, Ĉ=CP, (23)

with P denoting a linear transformation of the system into the balanced
co-ordinate system. In addition, the two grammians are equal in this co-ordinate
system:

Ŵc = Ŵo =diag [s1, s2, . . . , s2n ], (24)

where Ŵc =P−1WcP, Ŵo =P−1WoP and the sis denote the singular values of the
grammians. Applying the idea of singular values as a measure of rank deficiency
to the controllability and observability grammians yields a systematic model
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reduction method. The matrix P that transforms the original system (A, B, C) into
a balanced system (Â, B̂, Ĉ) can be obtained using the following algorithm:

(1) The reduced order model can be calculated by first calculating an
intermediate transformation matrix P1 based on the controllability
grammians. Solve for Wc and find eigenvalues Lc and eigenvectors Vc such
that VT

c WcVc =Lc . Then define P1 =VcL
−1/2
c .

(2) The co-ordinate transformation x=P1x̃ yields an intermediate system
(A	 , B	 , C	 ) calculated by A	 =P−1

1 AP1, B	 =P−1
1 B, C	 =CP1.

(3) To complete the balancing algorithm, these intermediate equations are
balanced with respect to W	 o . Solve for W	 o and find eigenvalues L	 o and
eigenvectors V	 o such that V	 T

o W	 oV	 o =L	 o . Let P2 =V	 oL	 −1/4
o .

(4) Another co-ordinate transformation x̃=P2x̂ yields the desired balanced
system (Â, B̂, Ĉ):

Â=P−1
2 A	 P2 =P−1

2 (P−1
1 AP1)P2, B̂=P−1

2 B	 =P−1
2 P−1

1 B,

Ĉ=C	 P2 =CP1P2.

The transformation P is given by P1 and P2 as P=P1P2. Using the above
equations, the balanced system (Â, B̂, Ĉ) can be partitioned as

$x̂
.

r

x̂
.

d%=$ Âr

Â21

Â12

Â22%$x̂r

x̂d%+$B̂r

B̂d%u, y=[Ĉr Ĉd ]$x̂r

x̂d%. (25)

Deleting the k least controllable and observable states, i.e., setting x̂d =0, provides

x̂
.

r (t)= Âr x̂r (t)+ B̂ru(t), ŷr (t)= Ĉr x̂r (t), (26)

a reduced model of order (n− k). This produces the balanced system which is
reduced by looking at the singular values of the balanced system and throwing
away those co-ordinates which have relatively small singular values, indicating
that those co-ordinates do not have much effect on the system response. This
leaves a smaller order system with essentially the same dynamics as the full order
system.

4.3.    

Unfortunately the co-ordinates left after a balanced reduction are not a subset
of the finite element nodal co-ordinates. For example, if one applies standard
balancing to a system with GHM elements, one may not get that x̂

.
r (t)= z(t),

which is what is desired. The reduced model is not simple to relate back to the
original finite element model as is the case in the Guyan reduction. This problem
is solved by introducing an additional co-ordinate transformation [14] to produce
a reduced order model in a co-ordinate system consisting of a subset of the original
finite element co-ordinate system. For finite element and measurement
applications, it is desirable to provide a clear, physical relationship between the
original vector q and the reduced state vector x̂r . Such a relationship is found by
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using the fact that the balanced states are linear combinations of the original
states. Symbolically this is written as

x̂1 = s
2n

j=1

c1jxj , . . . , x̂2n− k = s
2n

j=1

c(2n− k)jxj ,

x̂2n−(k−1) = s
2n

j=1

c(2n− k+1)jxj:0, . . . , x̂2n = s
2n

j=1

c2njxj:0, (27)

where the cij ’s are the coefficients in the linear combinations of {x1, x2, . . . , x2n}.
Here the last k states are set to zero because they represent the least significant
states in the balanced system. That is, the last k states are those that yield the least
response. Setting each of these summations equal to zero is equivalent to imposing
k constraints on the original 2n states, which means that the modal reduction
imposes dependencies on k number of the original states. In other words, one can
construct a reduced order model by selecting (2n− k) states out of the original
2n states. If the (2n− k) selected states from the original system are denoted by
xr =[xj1 xj2 · · · xj2n− k ]T and the (2n− k) states of the balanced system by
x̂r =[x̂1 x̂2 · · · x̂2n− k ]T, then the states in x̂r are linear combinations of the states
in xr . Thus, there exists a new transformation matrix Pr of order
(2n− k)× (2n− k) such that xr =Pr x̂r . The above constraints and the resulting
transformation allow the user to specify which nodal co-ordinates of the original
model are to be retained in the model reduction. In the following it is shown that
the matrix Pr consists of certain rows and columns of the original transformation
matrix P, and that there is a systematic way of constructing Pr from P.

(1) Select the state variables to be retained from {x1, x2, . . . , x2n− k}. Let the
indices of those selected be {j1, . . . , j2n− k} rows from P.

(2) The transformation matrix Pr can be obtained by selecting first 2n− k
columns and {j1, . . . , j2n− k} rows from P.

(3) The reduced order system (Ar , Br , Cr ),

ẋr (t)=Arxr(t)+Bru(t), yr (t)=Crxr (t), (28)

is now expressed in terms of a subset xr of the original state vector x, where

Ar =PrÂrP−1
r , Br =PrB̂r , Cr = ĈrP−1

r . (29)

Thus, a scheme has been provided that has the best features of the Guyan
reduction method and of the balanced reduction method. It is possible to both

T 2

Physical and geometrical properties of the viscoelastic beam

Length (m) Thickness (m) Width (m) Density (kg/m3) Poisson’s ratio (n)

0·1 5·08E-5 0·01 1105 0·49
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specify which co-ordinates to keep while providing a dynamically based reduction
scheme. This proposed method allows the removal of the internal co-ordinates,
z(s), added to the system to build a damping matrix, and thus, to incorporate
complex mode behavior in the original finite element co-ordinates of the original
order.

5. NUMERICAL EXAMPLE

A numerical example is presented in order to demonstrate the use of viscoelastic
element matrices in the finite element analysis of a viscoelastic beam (Figure 2)
through the three reduction methods as described above. All the calculations are
performed on a PC using MATLAB for windows by The Math works, Inc. The
physical and geometrical parameters of the DYAD-606 are as shown in Table 2.
The viscoelastic beam is equally divided into four elements so that it has four active
node points. Each node point has six degrees of freedom, that is one translational
displacement, one rotational displacement, and four additional viscoelastic
auxiliary degrees of freedom. Hence, the viscoelastic beam has 24 degrees of
freedom in total.

The equation of motion of the transverse vibration of a viscoelastic beam may
be presented by a GHM finite element form with two mini-oscillator terms; two
terms are chosen because of the curve slope given in Figure 1:

Me q̈+De q̇+Keq= fe , (30)

where the finite element matrices are given by

Me = &M�00 0
(â1/v̂2

1 )E0Le

0

0
0

(â2/v̂2
2 )E0Le', (31)

De = &000 0
(2â1z
 1/v̂1)E0Le

0

0
0

(2â2z
 2/v̂2)E0Le', (32)

Ke = &K�E0(1+ â1 + â2)
−â1E0LeRT

e

−â2E0LeRT
e

−â1E0ReLe

â1E0Le

0

−â2E0ReLe

0
â2E0Le ', (33)
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Figure 2. A cantilever beam with four elements.

and the element force fe =col {f, 0, 0} and the co-ordinate vector q=col {x, z1, z2}
with an element displacement vector x=col {w1, u1, w2, u2}. The elastic mass and
stiffness matrices for a beam element in a plane are given by [25]

156 22l 54 −13l

22l 4l2 13l −3l2

G
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k
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l

M� =
rAl
420 54 13l 156 −22l

,

−13l −3l2 −22l 4l2

Figure 3. Time response of output in original (––), internal balancing (- - -), and difference (· · ·)
between the two models.
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Figure 4. Time response of output in original (––), modified internal balancing (- - -), and
difference (· · ·) between the two models.

Figure 5. Time response of output in original (––), Guyan reduction (- - -), and difference (· · ·)
between the two models.
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T 3

Modal frequency (rad/s) and damping ratio

Original mode Guyan Internal balancing Mod. Int. balancing
ZXXXCXXXV ZXXXCXXXV ZXXXCXXXV ZXXXCXXXV
Frequency Damping Frequency Damping Frequency Damping Frequency Damping

1 16·94 0·308 16·94 0·308 16·94 0·308 16·94 0·308
2 186·48 0·297 187·85 0·299 186·61 0·297 186·90 0·297
3 555·03 0·104 671·40 0·123 577·84 0·117 577·84 0·117
4 1100·49 0·052 1963·07 0·069 1100·69 0·053 1100·69 0·053

12 6l −12 6l

6l 4l2 −6l 2l2

G
G

G

G

G

K

k

G
G

G

G

G

L

l

K� =
I
l3 −12 −6l 12 −6l

. (34)

6l 2l2 −6l 4l2

The values of the hatted constants a, z and v were obtained from curve fitting,
as shown in section 2.

All three procedures discussed in section 3, Guyan, internal balancing, and
modified internal balancing reduction methods, are applied to this GHM finite
element model of a cantilever viscoelastic beam (Figure 2). For the purpose of
demonstration, the impulse input is placed on the node 2 and the displacement

Figure 6. Frequency response function of original (––), internal balancing model (- - -), and
difference (· · ·) between the two models.
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Figure 7. Frequency response function of original (––), modified internal balancing model (- - -),
and difference (· · ·) between the two models.

of the tip (node 4) is measured. Thus, nodes 2 and 4 become important
co-ordinates that should be retained in the final reduced model. In Figure 3, the
time response curves of the original model and the model reduced by internal
balancing are plotted. Here one is able to delete the viscoelastic states, that is,
GHM internal variables and maintain the elastic states. The difference between the
responses of the output amplitude in the original and the reduced model shown
by the dashed line of Figure 3 is almost zero. In this case, the difference between
the full and reduced system response is 20·1. In Figure 4 the responses of the
original states and those of the modified internal balanced states are plotted. Here
all viscoelsatic states and the elastic states at nodes 1 and 3 have been removed.
Again both responses and their difference are plotted. The modified internally
balanced, reduced order model is expressed by the remaining eight states. The time
response curves of the original model and reduced model by the Guyan reduction
method are plotted in Figure 5. One thing to note here is that the Guyan reduction
method does not remove the viscoelastic states properly, as it does not take into
account system dynamics as shown in Figure 5. In Figures 3 and 4, it is shown
that despite some non-zero differences detected in the transient region, the
differences are nearly zero in comparison to the response of the original state.

In order do obtain the natural frequencies and damping ratios, the GHM model
is converted into state space form, the model reduction is applied to remove the
internal variables and the resulting eigenvalue problem is computed. The damping
ratio for each mode for each of the reduction methods is calculated by computing
the ratio of the negative of the real part of the eigenvalue to the absolute value
of the eigenvalue. Table 3 shows that the natural frequencies and damping ratios
of the third and fourth modes acquired from the Guyan reduction method do not
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agree with the original ones, while the values obtained by the internal balancing and
the modified internal balancing methods, agree with the original value.

Figures 6 and 7 show the phase and magnitude frequency responses for the
reduced order models using the balanced and modified balanced methods to remove
the internal variables associated with the GHM method. The original Bode plot is
shown as a solid line and the Bode plots of the internal balancing and the modified
balancing method are shown as dashed lines. For the Bode plots, the impulse input
is placed on node 2 and the displacement of the tip (node 4) is measured. As can
be seen, both magnitude and phase relationship agree well with the full order model.
Figures 6 and 7 also show that a single mode dominates the dynamic response
because it is a VEM beam. The reduced models using the internal balancing and
the modified internal balancing method preserve the phase relationships inherent
in the complex original models.

A relative error [13] is obtained to secure the accuracy due to modal reduction.
It provides a quantitative measure of error introduced by the reduction. As
mentioned earlier, the reduced model (Âr , B̂r , Ĉr ) of order (n− k) can be obtained
from the balanced representation by deleting k number of the least controllable and
observable states. One error measure is

Relative error=$ s
n

i= n− k+1

s2
i %

1/2

>$ s
n− k

i=1

s2
i %

1/2

, (35)

where the numerator is composed of singular values of deleted states and the
denominator is composed of those remaining states. The relative errors are
1·094E-17 and 1·786E-20 when using internal balancing and the modified internal
balancing method, respectively, indicating that the reduced models are indeed a
respectable realization of the original system.

6. CONCLUSION

This paper introduces the use of model reduction methods to remove internal
variables (mini oscillators) used to account for viscoelastic properties in finite
element modelling. These internal variable methods (Hughes, Lesieutre) have
become effective ways to model viscoelastic material by finite element analysis.
Unfortunately, they do so at the expense of increasing the model order. The
method proposed here eliminates the need to increase the order over that of the
original model. First, a model reduction method, based on internal balancing, is
developed to represent the reduced model by converting it into state space form
and removing the viscoelastic states that do not have much effect on the system
response. As a result, the reduced model represents the original model with fewer
states than the original model requires. Next, the model is expressed by a subset
of the original states through another transformation that is derived from the
deleted states in reduction. The method thereby provides a clear, physical
relationship between the states in the reduced model and those in the original
model. Finally, the Guyan reduction method does not remove the viscoelastic
states (internal variables) without introducing substantial error. To check the
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accuracy between the original model and the reduced models, the natural
frequencies, damping ratios, Bode plots and relative error criterion are given.
There are good agreements between the full model and the reduced models derived
from the internal balancing and the modified internal balancing method. In
particular, the modified internal balancing produces a reduced model that is an
excellent representation of the viscoelastic system. The approach presented here
renders modelling methods of the previous literature more useful to those
situations where it is desired to keep the order of the finite element model as low
as possible, yet accounts for viscoelastic effects.
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